AMERICAN UNIVERSITY OF BEIRUT Electrical and Computer Engineering Department
 EECE 340
 Homework I

Problem 1

Determine whether the following signal is periodic. If it is periodic, find its period.

$$
x(t)=\sin \left(\frac{5}{13} \pi^{2} t\right)
$$

Problem 2

Determine whether or not the following signal $f(t)=4 u(t)+2 \sin (3 t)$ is periodic. If the signal is periodic, determine its fundamental period.

Problem 3

Determine whether or not each of the following signals is periodic. If the signal is periodic, determine its fundamental period.
a) $x(t)=\left[\cos \left(\frac{\pi}{3} t-\pi\right)\right]^{3}$
b) $x(t)=\cos \left(\frac{\pi}{3} t\right)+\sin \left(\frac{3 \pi}{4} t-\pi\right)$

Problem 4

Consider the periodic signal $\mathrm{x}(\mathrm{t})$ given by the expression

$$
x(t)=(2+2 j) e^{-j 3 t}-3 j e^{-j 2 t}+5+3 j e^{j 2 t}+(2-2 j) e^{j 3 t}
$$

Determine the period of $x(t)$ and its fundamental frequency.

Problem 5

Consider the everlasting signal $X(t)=e^{-a t}$. Is $\mathrm{X}(\mathrm{t})$ an energy signal? For which values of "a" $\mathrm{X}(\mathrm{t})$ is a power signal? Determine its average power.

Problem 6

Classify these signals into energy-type signals, power-type signals, and signals that are neither energy type nor power type signals. For energytype and power-type signals, find the energy or the power content of the signals
a. $x(t)=4 e^{j 2 \pi f_{0} t}+3 e^{j\left(2 \pi f_{1} t+\theta\right)}$
b. $y(t)=e^{-2|t|}$

Problem 7

Categorize each of the following signals as an energy signal or a power signal. Sate the reason for your answer.
(a) The continuous-time signal $\mathrm{x}(\mathrm{t})$, defined by

$$
x(t)= \begin{cases}3 e^{-2 t}, & t \geq 0, \\ 0, & \text { otherwise } .\end{cases}
$$

(b) The continuous-time signal $\mathrm{z}(\mathrm{t})$, defined for $-\infty<\mathrm{t}<\infty$ by

$$
\mathrm{z}(\mathrm{t})=3 \sin (\pi \mathrm{t})+2 \cos (3 \pi \mathrm{t})
$$

(c)

Problem 8

Consider the signal shown below

a. What is the total energy of the signal $\mathrm{x}(\mathrm{t})$
b. What is the time-averaged power of the signal $\mathrm{x}(\mathrm{t})(4 \mathrm{pts})$

Problem 9

Consider the signal shown below

$$
x(t)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{t}} & t>1 \\
0 & t \leq 1
\end{array}\right\}
$$

a. Determine the total energy of this signal. Is $x(t)$ an Energy Signal?

Determine the average power of this signal. Is $x(t)$ a power signal.

Problem 10

A continuous-time signal $g(t)$ is defined as:

$$
g(t)=\left\{\begin{array}{cc}
12 \cos ^{2}(2 \pi t), & -8<t<31 \\
0, & \text { elsewhere }
\end{array}\right.
$$

a. Is $g(t)$ an energy signal?
b. Is $\mathrm{g}(\mathrm{t})$ a power signal?
c. Based on your results in parts (a) and (b), categorize the signal as an energy signal or a power signal.

